To paraphrase Vane Jones, "Knowledge is of little value until shared with others."

Tuesday, September 20, 2016

Working on the 2 End Loop Modules - Part 5

"Why O' Why?" am I going through this writing of turnout making? There are the older Atlas turnouts made 20+ years ago. These turnouts are easy to install. They have a 24" radius curve. BTW-It's easier to spiral inward than outward on curves especially involving turnouts.

My goal is to encourage those of you who don't desire to use Atlas turnouts or can't get them. One con about using the Atlas turnouts is the mechanism sticks out the side of them. The "real" prototype mechanisms like Caboose Industries ground turnouts look better and work just as well as the Atlas with the exception of the frog wiring for 2-rail. However, with trolleys and all wheels grounded there are no problems.

The annual Hoosier Traction Meet was held on the 1st weekend of this month, September. The annual Indianapolis O Scale Meet is usually on the 3rd weekend of September. This year, 2016, the Indie Meet is also the National O Scale Meet. If you have problems obtaining tools and parts these are the Meets to attend. There is also the annual March O Scale Meet held usually the weekend of St Patrick's Day, March 17, at a hotel about 2-3 miles from where I live.

These are some items required if you intend to lay your own track and turnouts.

Rail Bender
Before laying any rail, a rail curve maker commonly called a rail bender is needed. Unfortunately I'm unaware of any source of an O scale rail bender. If you do not have one you'll have to look for one to purchase or borrow from a friend.

Placing a curve in rail to be used in curves is helpful. The bender has 2 holes to mount it with screws on something solid. I used the side of a module on which to mount my bender. Allow sufficient room to move the rail back and forth!
The bolt sticking out of the side is to be able to move the center wheel in and out to vary the amount of bend in the rail. The back of the plate has nuts or something to  hold the wheels in place. The bender has to be installed with washers between the bottom of the plate and the top of the material on which the plate is mounted.

The 3 wheels on the bender have groves milled into them to hold the base of the rail, the center web of the rail, and the rail head. The bender seem to hold almost any size rail from code 100 to 148 without any problem. Although it looks like the wheels can be changed. All of my work has been with code 100 to 148.

Try to get the bend as close to the actual radius required. It's easy to change the radius as the rail is spiked into place. But, once a piece of rail which is not the correct radius has been spiked in place; it might move out of location just a little bit.

In the photos notice the short length of rail (about 1" or so) from the center wheel to the outside wheel. This 1" of rail does not get bent as needed. There's a slight kink in the bent rail where the center wheel was located. The kink is hard to see. I started marking the amount of rail to be cut off while the rail was in the bender.

The red arrow is the mark mentioned above. The rail in the blue ellipse is the amount to cut off after the bending is completed.

This is a photo showing the kink in the rail from the rail bender. The last portion of the rail has not been cut off. My finger is only holding the rail down, next to the spiked down rail of the curve. My finger is not making the kink. The red arrow points to where the kink is and the rail to be cut off.


Spikes
Spikes are required to attach the rail to the ties. I use a flat blade pliers to install the spikes. Special pliers are available but I don't like them. I have found the rail can be spiked on every other rail. Sometimes additional spikes are required at special places.


Over the years my collection of track spikes has increase. This is what was found in my stock -
  • Micro Spikes by Micro Engineering size 0.015" diameter x 5/32" length Too small for O scale. Small head makes then applicable where 4 spikes are definitely required for cosmetic reasons. They would have to be glued in place.
  • "HO" Gauge Spikes by All-Nation Hobby Shop size 0.028" diameter x 1/4" length Unfortunately All-Nation is no longer in business. While the diameter of these spikes are great, the length is a little too short for O scale. Nice to fill-in on stable track where more spikes are required to hold the rail.
  • "O" Gauge Spikes by All-Nation Hobby Shop size 0.028" diameter x 7/16 length 7/16" is just short of 1/2". Same info about All-Nation. The diameter of these spikes is great. The length if the spike may be too long for most applications. The length of the head of the spike may be longer than the base of the rail. When used the spike may force the rail out of alignment! They've been used when rail has to be forced into position and held in place. It's best to drill a pilot hole for these.
  • Old Pullman Spikes by Old Pullman size 0.035" diameter x 5/16" length Unfortunately Old Pullman is no longer in business. These spikes do show up for sale at O scale meets. These are perfect spikes to use. Most of the time they can be just pushed into the tie to hold the rail. The spike must be pushed in correctly of else the tie may split. Sometimes a pilot hole has to be drilled.
  • Code 70 Spikes by Unknown Manufacturer size 0.025" diameter x 11/32" length I have absolutely no idea where these spikes were obtained. They are great but easy to bend when being pushed into the tie and roadbed. They have a great application in making open roadbed track. This will be explained when this comes up. 
Whenever spikes are being used a battery operated Demel Tool is kept handy with a # 74 drill (0.0225" diameter) in the chuck to make a pilot hole if required.

Perhaps now is the time to mention the new cordless drill available from Dremel. It's their model 8050 Micro/Model:8050 https://www.dremel.com/en-us/Tools/Pages/ToolDetail.aspx?pid=8050#.V96bIYWcGM8  This is a light weight drill for as you may guess, light weight applications like drilling small holes. What's great about this drill is the lack of a cord. At the end of your work session place the drill back into it's holder/battery recharger.

Rail Laying
To start laying rail, for the traffic facing turnout a small section of flextrack was installed where the cork roadbed was started. This straight flextrack acted as a "gauge" of where the rail was to be laid for the start of the turnout.

NOTE - Each end module has 2 turnouts. If you'll recall it's been more than 10 years since I've scratch built a turnout. The building of the 1st turnout on the module was not as satisfactory as I had wanted. The 2nd turnout on this module turned out better. Therefore only the building of the 2nd turnout on the module will be shown.

In building a turnout install each piece of rail as recommended in the many YouTube videos on turnout building. After the straight stock rail was installed, the curved stock rail was installed. The curved stock rail was longer than required. This will be explained later. Work was stopped on this turnout.

Attention is now given to the trailing turnout and the crossing next to it. Install pieces of flextrack on both sides of this turnout to act as "gauges" for the location of the turnout rails. 
The flextrack is on the right of the turnout. Rail joiners are installed at the end of the rail to hold the stock rails of the turnout in place. You may notice the small brads (nails with small heads) holding the flextrack. Holes have to be drilled in the plastic ties for the brads.

Install the straight stock rail. Then install the curved stock rail using a 36" long piece of rail (with the ends cut off from the bending process). This rail when installed will be part of the curved crossing rail. Continue to spike this piece of rail in place using your trammel as a guide. Add another piece of curved rail to this one and spike it in place. This interior curved rail is spiked to the location where the curve reverses.
Green Arrow = Hole for the 14" curve through which the rail is viewed.
Blue Ellipse = Spike pliers I don't like; they lock the spike in to hold it.
Red Ellipse = the pliers I like to drive spikes.
Dark Blue Ellipse = Code 70 and Old Pullman spikes.
Pink Ellipse = NMRA track gauges always ready to be used.
Dark Lime Ellipse = Center of trammel held at correct height as rail head.
Important Note: The curved rail goes all the way through the curved crossing as 1 piece of rail!

The point of where the curve reverses is determined by drawing a line between the 2 centers of the curves. The line drawn between the 2 center points may be on an angle but don't worry.
The pencil line can be seen on both sides of the cork roadbed. Also note the slight "S" shape of the roadbed.

The next piece of rail to install is the curved piece which will be part of the frog. The next Post will start off with installation.

Cheers,
Ed

No comments:

Post a Comment